Effects of attenuation map accuracy on attenuation-corrected micro-SPECT images

نویسندگان

  • Chao Wu
  • Hugo A Gratama van Andel
  • Peter Laverman
  • Otto C Boerman
  • Freek J Beekman
چکیده

UNLABELLED BACKGROUND In single-photon emission computed tomography (SPECT), attenuation of photon flux in tissue affects quantitative accuracy of reconstructed images. Attenuation maps derived from X-ray computed tomography (CT) can be employed for attenuation correction. The attenuation coefficients as well as registration accuracy between SPECT and CT can be influenced by several factors. Here we investigate how such inaccuracies influence micro-SPECT quantification. METHODS Effects of (1) misalignments between micro-SPECT and micro-CT through shifts and rotation, (2) globally altered attenuation coefficients and (3) combinations of these were evaluated. Tests were performed with a NEMA NU 4-2008 phantom and with rat cadavers containing sources with known activity. RESULTS Changes in measured activities within volumes of interest in phantom images ranged from <1.5% (125I) and <0.6% (201Tl, 99mTc and 111In) for 1-mm shifts to <4.5% (125I) and <1.7% (201Tl, 99mTc and 111In) with large misregistration (3 mm). Changes induced by 15° rotation were smaller than those by 3-mm shifts. By significantly altering attenuation coefficients (±10%), activity changes of <5.2% for 125I and <2.7% for 201Tl, 99mTc and 111In were induced. Similar trends were seen in rat studies. CONCLUSIONS While getting sufficient accuracy of attenuation maps in clinical imaging is highly challenging, our results indicate that micro-SPECT quantification is quite robust to various imperfections of attenuation maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New approach for attenuation correction in SPECT images, using linear optimization

Background: Photon attenuation as an inevitable physical phenomenon influences on the diagnostic information of SPECT images and results to errors in accuracy of quantitative measurements. This can be corrected via different physical or mathematical approaches. As the correction equation in mathematical approaches is nonlinear, in this study a new method of linearization called ‘Piece ...

متن کامل

Evaluation of attenuation correction process in cardiac SPECT images

  Introduction: Attenuation correction is a useful process for improving myocardial perfusion SPECT and is dependent on activity and distribution of attenuation coefficients in the body (attenuation map). Attenuation artifacts are a common problem in myocardial perfusion SPECT. The aim of this study was to compare the effect of attenuation correction using different a...

متن کامل

Attenuation correction in myocardial perfusion SPECT using sequential transmission - emission scanning with 99mTc [Persain]

Introduction: Nowadays, Imaging of the myocardial perfusion (MPI) using the single photon emission tomography (SPET) in the diagnosis of coronary artery disease, especially myocardial ischemia, is of great importance. In contrast to the coronary artery angiography, MPI is non-invasive, less expensive and more physiological. Unfortunately, this image is affected by the some artifacts. Thes...

متن کامل

Assessment of the impact of applying attenuation correction on the accuracy of activity recovery in Tc99m-ECD brain SPECT of healthy subject using Statistical Parametric Mapping (SPM)

Introduction: Photon attenuation in tissues is the primary physical degrading factor limiting both visual qualitative interpretation and quantitative analysis capabilities of reconstructed Single Photon Emission Computed Tomography (SPECT) images. The aim of present study was to investigate the effect of attenuation correction on the detection of activation foci following statistical analysis w...

متن کامل

Attenuation Correction in SPECT during Image Reconstruction using an Inverse Monte Carlo Method: A Simulation Study

Introduction: The main goal of SPECT imaging is to determine activity distribution inside the organs of the body. However, due to photon attenuation, it is almost impossible to do a quantitative study. In this paper, we suggest a mathematical relationship between activity distribution and its corresponding projections using a transfer matrix. Monte Carlo simulation was used to find a precise tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013